题目内容

已知
π
4
<α<β<
π
2
,且sin(α+β)=
4
5
cos(α-β)=
12
13
,求sin2α,cos2β,tan2β的值.
π
4
<α<β<
π
2
,∴
π
2
<α+β<π,-
π
4
<α-β<0,
∴cos(α+β)=-
3
5
,sin(α-β)=-
5
13
,tan(α+β)=-
4
3
,tan(α-β)=-
5
12

则sin2α=sin[(α+β)+(α-β)]
=sin(α+β)cos(α-β)+cos(α+β)sin(α-β)
=
4
5
×
12
13
+(-
3
5
)×(-
5
13

=
63
65

cos2β=cos[(α+β)-(α-β)]
=cos(α+β)cos(α-β)+sin(α+β)sin(α-β)
=(-
3
5
)×
12
13
+
4
5
×(-
5
13

=-
56
65

tan2β=tan[(α+β)-(α-β)]
=
tan(α+β)-tan(α-β)
1+tan(α+β)tan(α-β)

=
-
4
3
-(-
5
12
)
1+(-
4
3
) ×(-
5
12
)

=-
33
56
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网