题目内容
(本小题满分12分)
已知函数.
(Ⅰ)当时,求关于的不等式解集;
(Ⅱ)当时,若恒成立,求实数的最大值.
有一个几何体的正视、侧视、俯视图分别如下,则该几何体的表面积为( )
A. B. C. D.
已知双曲线的焦距为2c,右顶点为A,抛物线的焦点为F,若双曲线截抛物线的准线所得线段长为2c,且,求双曲线的渐近线方程.
若集合,,则 .
已知四棱锥的底面是菱形,,,,与交于点,,分别为,的中点.
(1)求证:平面;
(2)求直线与平面所成角的正弦值.
过椭圆的右焦点作斜率的直线交椭圆于,两点,且与
共线.
(Ⅰ)求椭圆的离心率;
(Ⅱ)设为椭圆上任意一点,且. 证明:为定值.
某自来水厂的蓄水池有吨水,水厂每小时可向蓄水池中注水吨,同时蓄水池又向居民小区不间断供水,小时内供水总量为 吨,其中.
(Ⅰ)从供水开始到第几小时,蓄水池中的存水量最少? 最少水量是多少吨?
(Ⅱ)若蓄水池中水量少于吨时,就会出现供水紧张现象,请问:在一天的小时内,大约有几小时出现供水紧张现象?
已知函数,.
(1)求的单调增区间和最小值;
(2)若函数与函数在交点处存在公共切线,求实数的值;
(3)若时,函数的图象恰好位于两条平行直线,之间,当与间的距离最小时,求实数的值.
命题“,”是假命题,则实数的取值范围是 .