题目内容

10.计算:${∫}_{1}^{2}$($\frac{1}{x}$+$\frac{1}{{x}^{2}}$)dx=$\frac{1}{2}$+ln2.

分析 根据定积分的计算法则计算即可.

解答 解:${∫}_{1}^{2}$($\frac{1}{x}$+$\frac{1}{{x}^{2}}$)dx=(lnx-$\frac{1}{x}$)|${\;}_{1}^{2}$=(ln2-$\frac{1}{2}$)-(ln1-1)=ln2-$\frac{1}{2}$+1=$\frac{1}{2}$+ln2,
故答案为:$\frac{1}{2}$+ln2.

点评 本题考查了定积分的计算,关键是求出原函数,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网