题目内容
到点(-1,0)的距离与到直线x=3的距离相等的点的轨迹方程为( )
| A、x2=-4y+4 | B、x2=-8y+8 | C、y2=-4x+4 | D、y2=-8x+8 |
分析:由题意动点到定点点(-1,0)的距离与到直线x=3的距离相等,利用直接法,设出动点为P的坐标(x,y),利用条件建立方程并化简即可.
解答:解:由题意设动点P(x,y),因为动点到定点点(-1,0)的距离与到直线x=3的距离相等,所以
=|3-x|?两边平方化简为:y2=-8x+8
故选D
| (x+1)2+y2 |
故选D
点评:此题重点考查了利用直接法求动点的轨迹方程,还考查了根式的化简方法,及学生对于轨迹方程的定义的准确理解和计算能力.
练习册系列答案
相关题目