题目内容

已知动点M到点F(-
2
,0)的距离与到直线x=-
2
2
的距离之比为
2

(1)求动点M的轨迹C的方程;
(2)若过点E(0,1)的直线与曲线C在y轴左侧交于不同的两点A、B,点P(-2,0)满足
PN
=
1
2
(
PA
+
PB
)
,求直线PN在y轴上的截距d的取值范围.
分析:(1)直接设出点M的坐标,列出M的关系式,代入坐标化简即可.即用直接法求轨迹方程.
(2)由(1)可知动点M的轨迹C为双曲线,联立方程,消元,若过点E(0,1)的直线与曲线C在y轴左侧交于不同的两点A、B,即消元后的方程应有两个负实根,故
k2-1≠0
△=4k2+8(1-k2)>0
x1+x2=
2k
1-k2
<0
x1x2=
-2
1-k2
>0
,求出k的范围.由
PN
=
1
2
(
PA
+
PB
)
知N为AB的中点,由维达定理表示出N的坐标,写出PN的方程,令x=0,用k表示出直线PN在y轴上的截距d,转化为求函数的值域.
解答:解:(1)设动点M的坐标为(x,y),由题设可知
(x+
2
)
2
+y2
|x+
2
2
|
=
2
,整理得:x2-y2=1,
∴动点M的轨迹C方程为x2-y2=1
(2)设A(x1,y1),B(x2,y2),
由题设直线AB的方程为:y=kx+1,
y=kx+1
x2-y2=1
(x≤-1)消去y得:(1-k2)x2-2kx-2=0(x≤-1),
由题意可得:
k2-1≠0
△=4k2+8(1-k2)>0
x1+x2=
2k
1-k2
<0
x1x2=
-2
1-k2
>0

解得1<k<
2
PN
=
1
2
(
PA
+
PB
)
,∴N为AB中点,设N(x0,y0
x0=
x1+x2
2
=
k
1-k2
y0=kx0+1=
1
1-k2

∴N(
k
1-k2
1
1-k2
),P(-2,0),Q(0,d)三点共线可知d=
2
-2k2+k+2

令f(k)=-2k2+k+2,则f(k)在(1,
2
)上为减函数.
∴f(
2
)<f(k)<f(1)且f(k)≠0,则d<-(2+
2
)或d>2.
点评:本题考查直接法求轨迹方程和直线与双曲线位置关系的判断、圆锥曲线中范围的求解,综合性强,计算量大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网