题目内容

已知抛物线y2=2x,定点A的坐标为(
2
3
,0).
(1)求抛物线上距点A最近的点P的坐标及相应的距离|PA|;
(2)设B(a,0),求抛物线上的点到点B的距离的最小值d.
(1)设P(x,y)为抛物线上任一点,
|PA|2=(x-
2
3
)
2+y2=(x-
2
3
)
2+2x=(x+
1
3
)
2+
1
3

∵x∈[0,+∞),∴x=0时,|PA|min=
2
3

此时P(0,0).
(2)|PB|2=(x-a)2+y2=(x-a)2+2x=[x-(a-1)]2+2a-1(x≥0).
①当a-1≥0,即a≥1时,
在x=a-1时,|PB|min2=2a-1;
②当a-1<0,即a<1时,在x=0时,
|PB|min2=a2,故d=
2a-1
(a≥1)
|a      (a<1)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网