题目内容
现有张不同的卡片,其中红色、黄色、蓝色、绿色卡片各张.从中任取张,要求这张卡片不能是同一种颜色,且红色卡片至多张.则不同取法的种数为__________.
(本小题满分13分)如图甲,在平面四边形中,已知,,,,现将四边形沿折起,使平面平面(如图乙),设点,分别为棱,的中点.
(1)证明平面;
(2)求与平面所成角的正弦值;
(3)求二面角的余弦值.
设双曲线(,)的虚轴长为,焦距为,则双曲线的渐近线方程为( )
A. B. C. D.
(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
已知数列中,,,的前项和为,且满足().
(1)试求数列的通项公式;
(2)令,是数列的前项和,证明:;
(3)证明:对任意给定的,均存在,使得当时,(2)中的恒成立.
已知平面直角坐标系内的两个向量,,且平面内的任一向量都可以唯一的表示成为实数),则实数的取值范围是( )
A. B.
C. D.
若(),且,则_______________.
(本题满分16分)本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分6分.
已知两动圆和(),把它们的公共点的轨迹记为曲线,若曲线与轴的正半轴的交点为,且曲线上的相异两点满足:.
求曲线的方程;
若的坐标为,求直线和轴的交点的坐标;
证明直线恒经过一定点,并求此定点的坐标.
二项式的展开式中,项的系数为 .
为实数,表示不超过的最大整数,则函数在上为
A.增函数 B.周期函数 C.奇函数 D.偶函数