题目内容
6.(文)设x,y满足约束条件$\left\{\begin{array}{l}{y≤2}\\{y≥4-x}\\{y≥x-1}\end{array}\right.$,则z=3x+y的最小值为8.分析 由约束条件左侧可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.
解答
解:由约束条件$\left\{\begin{array}{l}{y≤2}\\{y≥4-x}\\{y≥x-1}\end{array}\right.$左侧可行域如图,
联立$\left\{\begin{array}{l}{y=2}\\{y=4-x}\end{array}\right.$,解得A(2,2),
化目标函数z=3x+y为y=-3x+z,
由图可知,当直线y=-3x+z过A时,直线在y轴上的截距最小,z有最小值为3×2+2=8.
故答案为:8.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
练习册系列答案
相关题目
16.设a=0.5${\;}^{\frac{1}{2}}$,b=0.8${\;}^{\frac{1}{2}}$,c=log20.5,则a、b、c的大小关系是( )
| A. | c<b<a | B. | c<a<b | C. | a<b<c | D. | b<a<c |
17.方程x2+y2-2x+4y+6=0表示的图形为( )
| A. | 一个点 | B. | 一个圆 | C. | 一条直线 | D. | 不存在 |
14.执行如图所示的程序框图,若输出的i的值为12,则①、②处可填入的条件分别为( )

| A. | S>384,i=i+1 | B. | S≥384,i=i+2 | C. | S>3840,i=i+1 | D. | S≥3840,i=i+2 |
1.给出下面的程序框图,则输出的结果为( )

| A. | $\frac{5}{6}$ | B. | $\frac{4}{5}$ | C. | $\frac{3}{4}$ | D. | $\frac{6}{7}$ |