题目内容

5.如图,将菱形ABCD沿对角线BD折起,使得C点至C′,E点 在线段AC′上,若二面角A-BD-E与二面角E-BD-C′的大小分别为和45°和30°,则$\frac{AE}{EC′}$=(  )
A.$\sqrt{5}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

分析 取BD的中点O,连接AO,EO,C′O,可得∠AOE=45°,∠EOC′=30°,∠OC′E=∠OAE,由正弦定理能求出$\frac{AE}{EC′}$的值.

解答 解:取BD的中点O,连接AO,EO,C′O,
∵菱形ABCD沿对角线BD折起,使得C点至C′,E点在线段AC′上,
∴C′O⊥BD,AO⊥BD,OC′=OA,
∴BD⊥平面AOC′,
∴EO⊥BD,
∵二面角A-BD-E与二面角E-BD-C′的大小分别为45°和30°,
∴∠AOE=45°,∠EOC′=30°,
∵OC′=OA,∴∠OC′E=∠OAE,
由正弦定理得$\frac{OE}{sin∠OC′E}$=$\frac{EC′}{sin∠EOC′}$,$\frac{OE}{sin∠OAE}=\frac{AE}{sin∠AOE}$,
∴$\frac{EC′}{sin∠EOC′}=\frac{AE}{sin∠AOE′}$,
∴$\frac{AE}{EC′}=\frac{sin45°}{sin30°}=\frac{\frac{\sqrt{2}}{2}}{\frac{1}{2}}=\sqrt{2}$.
故选:D.

点评 本题考查二面角的平面角及其求法,考查空间想象能力和思维能力,训练了正弦定理在求解三角形问题中的应用,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网