题目内容
设数列{an}的首项(1)求a2,a3;
(2)判断数列{bn}是否为等比数列,并证明你的结论;
(3)当
【答案】分析:(I)由且
,n∈N*,求解可得a2=a+
,a3=
(a+
).
(II)由记
,可推知bn=a2n-1-
=
(a2n-3+
)-
=
(a2n-3-
)=
bn-1,又因为b1=a1-
=a-
≠0由等比数列的定义可知数列{bn}为等比数列.
(III)当a>
时,{bn}为正项等比数列,可由bn+1+bn+2+bn+…+bn+m=bn+1
<2bn+1=bn,当n≥4时,sn-s3=-b4-b5+…+
,从而有sn-s3<b2-b3-b4-…-bn<0同理,可得sn-s1=b2+b3-b4-b5+…+
,可推知:当n≥4,s1<sn<s3,s1<s2<s3从而得到结论.
解答:解:(I)a2=a+
,a3=
(a+
)
(II)∵bn=a2n-1-
=
(a2n-3+
)-
=
(a2n-3-
)=
bn-1
∵b1=a1-
=a-
≠0
∴
的等比数列
(III)当a>
时,
∵{bn}为正项等比数列,
∴bn+1+bn+2+bn+…+bn+m=bn+1
<2bn+1=bn
当n≥4时,sn-s3=-b4-b5+…+
bn<b2-b3-b4-…-bn<0
sn-s1=b2+b3-b4-b5+…+
bn>b2-b3-b4-…-bn>0
当n≥4,s1<sn<s3,s1<s2<s3
故sn的最大值为s3=
(a+
),最小值为s1=a+
点评:本题主要考查数列的定义,通项及前n项和,还考查了数列的构造及前n项和的最值问题.难度较大.
(II)由记
(III)当a>
解答:解:(I)a2=a+
(II)∵bn=a2n-1-
∵b1=a1-
∴
(III)当a>
∵{bn}为正项等比数列,
∴bn+1+bn+2+bn+…+bn+m=bn+1
当n≥4时,sn-s3=-b4-b5+…+
sn-s1=b2+b3-b4-b5+…+
当n≥4,s1<sn<s3,s1<s2<s3
故sn的最大值为s3=
点评:本题主要考查数列的定义,通项及前n项和,还考查了数列的构造及前n项和的最值问题.难度较大.
练习册系列答案
相关题目