题目内容
16.计算:($\frac{27}{8}$)${\;}^{-\frac{1}{3}}$-cosπ-log2$\root{3}{4}$+${C}_{9}^{7}$=37.分析 化简($\frac{27}{8}$)${\;}^{-\frac{1}{3}}$=$((\frac{3}{2})^{3})^{-\frac{1}{3}}$=$\frac{2}{3}$,cosπ=-1,log2$\root{3}{4}$=$\frac{2}{3}$,${C}_{9}^{7}$=$\frac{9×8}{2×1}$=36,从而求得.
解答 解:∵($\frac{27}{8}$)${\;}^{-\frac{1}{3}}$=$((\frac{3}{2})^{3})^{-\frac{1}{3}}$=$\frac{2}{3}$,cosπ=-1,
log2$\root{3}{4}$=$\frac{2}{3}$,${C}_{9}^{7}$=$\frac{9×8}{2×1}$=36,
∴($\frac{27}{8}$)${\;}^{-\frac{1}{3}}$-cosπ-log2$\root{3}{4}$+${C}_{9}^{7}$=37,
故答案为:37.
点评 本题考查了对数运算与指数运算的应用,属于基础题.
练习册系列答案
相关题目
8.已知函数f(x)=lgx,若f(ab)=10,则f($\frac{1}{a}$)+f($\frac{1}{b}$)=( )
| A. | -10 | B. | $\frac{1}{10}$ | C. | 10 | D. | 20 |