题目内容
已知数列{bn}前n项和Sn=
n2-
n,数列{an}满足an3=4-(bn+2)(n∈N*),数列{cn}满足cn=anbn
(1)求数列{an}和数列{bn}的通项公式;
(2)求数列{cn}的前n项和Tn.
| 3 |
| 2 |
| 1 |
| 2 |
(1)求数列{an}和数列{bn}的通项公式;
(2)求数列{cn}的前n项和Tn.
分析:(1)利用bn=
,即可求得通项bn,进而求得通项an.
(2)先求得cn,进而利用错位相减法即可求得Tn.
|
(2)先求得cn,进而利用错位相减法即可求得Tn.
解答:解:(1)①n=1时,b1=S1=
×12-
×1=1,
当n≥2时,bn=Sn-Sn-1=
n2-
n-[
(n-1)2-
(n-1)]=3n-2,上式对于n=1时也适合,
∴数列{bn}的通项公式bn=3n-2;
②由①可知,an3=4-(bn+2)=4-3n,∴an=4-n,
∴数列{an}的通项公式an=4-n.
(2)由题意和(1)可知:cn=(3n-2)×4-n,
∴Tn=1×
+4×
+7×
+…+(3n-5)×
+(3n-2)×
,
×Tn=1×
+4×
+…+(3n-5)×
+(3n-2)×
,
∴
Tn=
+3×
+3×
+…+3×
-(3n-2)×
=
+3×
-(3n-2)×
,
∴Tn=
+
×(1-
)-(3n-2)×
=
-
-(3n-2)×
.
| 3 |
| 2 |
| 1 |
| 2 |
当n≥2时,bn=Sn-Sn-1=
| 3 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
∴数列{bn}的通项公式bn=3n-2;
②由①可知,an3=4-(bn+2)=4-3n,∴an=4-n,
∴数列{an}的通项公式an=4-n.
(2)由题意和(1)可知:cn=(3n-2)×4-n,
∴Tn=1×
| 1 |
| 41 |
| 1 |
| 42 |
| 1 |
| 43 |
| 1 |
| 4n-1 |
| 1 |
| 4n |
| 1 |
| 4 |
| 1 |
| 42 |
| 1 |
| 43 |
| 1 |
| 4n |
| 1 |
| 4n+1 |
∴
| 3 |
| 4 |
| 1 |
| 4 |
| 1 |
| 42 |
| 1 |
| 43 |
| 1 |
| 4n |
| 1 |
| 4n+1 |
| 1 |
| 4 |
| ||||
1-
|
| 1 |
| 4n+1 |
∴Tn=
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4n-1 |
| 1 |
| 4n+1 |
| 2 |
| 3 |
| 1 |
| 3×4n-1 |
| 1 |
| 4n+1 |
点评:本题考查了已知数列的前n项和求通项及利用错位相减法求数列的前n项和,掌握方法是解题的关键.
练习册系列答案
相关题目