题目内容
设f(x)为奇函数,且在(-∞,0)内是减函数,f(-2)=0,则xf(x)<0的解集为( )
| A.(-1,0)∪(2,+∞) | B.(-∞,-2)∪(0,2) | C.(-∞,-2)∪(2,+∞) | D.(-2,0)∪(0,2 |
∵f(x)为奇函数,且在(-∞,0)内是减函数,f(-2)=0,
∴f(-2)=-f(2)=0,在(0,+∞)内是减函数
∴x f(x)<0则
或
根据在(-∞,0)内是减函数,在(0,+∞)内是减函数
解得:x∈(-∞,-2)∪(2,+∞)
故选C
∴f(-2)=-f(2)=0,在(0,+∞)内是减函数
∴x f(x)<0则
|
|
根据在(-∞,0)内是减函数,在(0,+∞)内是减函数
解得:x∈(-∞,-2)∪(2,+∞)
故选C
练习册系列答案
相关题目
设f(x)为奇函数,且在(-∞,0)内是减函数,f(-2)=0,则xf(x)<0的解集为( )
| A、(-1,0)∪(2,+∞) | B、(-∞,-2)∪(0,2) | C、(-∞,-2)∪(2,+∞) | D、(-2,0)∪(0,2 |