题目内容
设f(x)为奇函数,且在(-∞,0)内是减函数,f(-2)=0,则xf(x)<0的解集为( )
| A、(-1,0)∪(2,+∞) | B、(-∞,-2)∪(0,2) | C、(-∞,-2)∪(2,+∞) | D、(-2,0)∪(0,2 |
分析:根据函数的奇偶性求出f(2)=0,x f(x)<0分成两类,分别利用函数的单调性进行求解.
解答:解:∵f(x)为奇函数,且在(-∞,0)内是减函数,f(-2)=0,
∴f(-2)=-f(2)=0,在(0,+∞)内是减函数
∴x f(x)<0则
或
根据在(-∞,0)内是减函数,在(0,+∞)内是减函数
解得:x∈(-∞,-2)∪(2,+∞)
故选C
∴f(-2)=-f(2)=0,在(0,+∞)内是减函数
∴x f(x)<0则
|
|
根据在(-∞,0)内是减函数,在(0,+∞)内是减函数
解得:x∈(-∞,-2)∪(2,+∞)
故选C
点评:本题主要考查了函数的奇偶性的性质,以及函数单调性的应用等有关知识,属于基础题.
练习册系列答案
相关题目