题目内容
6.已知函数f(x)=|x-1|+|x+1|,P为不等式f(x)>4的解集.(Ⅰ)求P;
(Ⅱ)证明:当m,n∈P时,|mn+4|>2|m+n|.
分析 (Ⅰ)由题意可得 f(x),分类讨论求得不等式f(x)>4的解集P.
(Ⅱ)由题意可得m2≥4,n2≥4,计算左边的平方减去右边的平方的结果大于或等于零,不等式得证.
解答 (Ⅰ)解:f(x)=|x-1|+|x+1|=$\left\{\begin{array}{l}{2x,x≥1}\\{2,-1<x<1}\\{-2x,x≤-1}\end{array}\right.$,
由f(x)的单调性及f(x)>4得,$\left\{\begin{array}{l}{2x>4}\\{x≥1}\end{array}\right.$或$\left\{\begin{array}{l}{-2x>4}\\{x≤-1}\end{array}\right.$,解得x>2或x<-2.
所以不等式f(x)>4的解集为P={x|x>2或x<-2}.
(Ⅱ)证明:由(Ⅰ)可知|m|>2,|n|>2,
所以m2>4,n2>4,(mn+4)2-4(m+n)2=(m2-4)(n2-4)>0,
所以(mn+4)2>4(m+n)2,
从而有|mn+4|>2|m+n|.
点评 本题主要考查绝对值不等式的解法,体现了等价转化和分类讨论的数学思想,用比较法证明不等式,属于中档题.
练习册系列答案
相关题目
16.上世纪八十年代初,邓小平同志曾指出“在人才的问题上,要特别强调一下,必须打破常规去发现、选拔和培养杰出的人才”.据此,经省教育厅批准,某中学领导审时度势,果断作出于1985年开始施行超常实验班教学试验的决定.一时间,学生兴奋,教师欣喜,家长欢呼,社会热议.该中学实验班一路走来,可谓风光无限,硕果累累,尤其值得一提的是,1990年,全国共招收150名少年大学生,该中学就有19名实验班学生被录取,占全国的十分之一,轰动海内外.设该中学超常实验班学生第x年被录取少年大学生的人数为y.
(1)左下表为该中学连续5年实验班学生被录取少年大学生人数,求y关于x的线性回归方程,并估计第6年该中学超常实验班学生被录取少年大学生人数;
附1:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline y$-$\stackrel{∧}{b}$$\overline{x}$
(2)如表是从该校已经毕业的100名高中生录取少年大学生人数与是否接受超常实验班教育得到2×2列联表,完成上表,并回答:是否有95%以上的把握认为“录取少年大学生人数与是否接受超常实验班教育有关系”.
附2:
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.
(1)左下表为该中学连续5年实验班学生被录取少年大学生人数,求y关于x的线性回归方程,并估计第6年该中学超常实验班学生被录取少年大学生人数;
| 年份序号x | 1 | 2 | 3 | 4 | 5 |
| 录取人数y | 10 | 11 | 14 | 16 | 19 |
(2)如表是从该校已经毕业的100名高中生录取少年大学生人数与是否接受超常实验班教育得到2×2列联表,完成上表,并回答:是否有95%以上的把握认为“录取少年大学生人数与是否接受超常实验班教育有关系”.
附2:
| 接受超常实验班教育 | 未接受超常实验班教育 | 合计 | |
| 录取少年大学生 | 60 | 20 | 80 |
| 未录取少年大学生 | 10 | 10 | 20 |
| 合计 | 70 | 30 | 100 |
| P(k2≥k0) | 0.50 | 0.40 | 0.10 | 0.05 |
| k0 | 0.455 | 0.708 | 2.706 | 3.841 |