题目内容

3.已知函数f(x)=Asin(ωx+φ)( A>0,ω>0,$|φ|<\frac{π}{2}$)在一个周期内的图象如图所示,则$f({\frac{π}{6}})$=(  )
A.1B.$\sqrt{3}$C.-1D.$-\sqrt{3}$

分析 由图知,A=2,易求T=π,ω=2,由f($\frac{π}{12}$)=2,|φ|<$\frac{π}{2}$,可求得φ=$\frac{π}{3}$,从而可得函数y=f(x)的解析式,继而得f($\frac{π}{6}$)的值.

解答 解:由图知,A=2,且$\frac{3}{4}$T=$\frac{5π}{6}$-$\frac{π}{12}$=$\frac{3π}{4}$,
∴T=π,ω=2.
∴f(x)=2sin(2x+φ),
又f($\frac{π}{12}$)=2,
∴sin(2×$\frac{π}{12}$+φ)=1,
∴$\frac{π}{6}$+φ=2kπ+$\frac{π}{2}$(k∈Z),又|φ|<$\frac{π}{2}$,
∴φ=$\frac{π}{3}$,
∴f(x)=2sin(2x+$\frac{π}{3}$),
∴f($\frac{π}{6}$)=2sin$\frac{2π}{3}$=$\sqrt{3}$,
故选:B.

点评 本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,求φ是难点,考查识图与运算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网