题目内容
已知为抛物线的焦点,为此抛物线上的点,且使的值最小,则点的坐标为 ****** .
;
已知为抛物线的焦点,为坐标原点.点为抛物线上的任一点,过点作抛物线的切线交轴于点,设分别为直线与直线的斜率,则 .
已知为抛物线的焦点,为坐标原点。点为抛物线上的任一点,过点作抛物线的切线交轴于点,设分别为直线与直线的斜率,则 .
已知为抛物线的焦点,抛物线上点满足
(Ⅰ)求抛物线的方程;
(Ⅱ)点的坐标为(,),过点F作斜率为的直线与抛物线交于、两点,、两点的横坐标均不为,连结、并延长交抛物线于、两点,设直线的斜率为,问是否为定值,若是求出该定值,若不是说明理由.
已知为抛物线的焦点,点为抛物线内一定点,点为抛物线上一动点,最小值为8.
(1)求该抛物线的方程;
(2)若直线与抛物线交于、两点,求的面积.
已知为抛物线的焦点,点为其上一点,点M与点N关于x轴对称,直线与抛物线交于异于M,N的A,B两点,且
(I)求抛物线方程和N点坐标;
(II)判断直线中,是否存在使得面积最小的直线,若存在,求出直线的方程和面积的最小值;若不存在,说明理由。