题目内容

在△ABC中,已知
a+b
a
=
sinB
sinB-sinA
,且cos(A-B)+cosC=1-cos2C.
(1)试确定△ABC的形状;
(2)求
a+c
b
的范围.
考点:三角形的形状判断,正弦定理,余弦定理
专题:解三角形
分析:(1)利用和差化积公式和二倍角公式对cos2C+cosC=1-cos(A-B)整理求得sinAsinB=sin2C,利用正弦定理换成边的关系,同时利用正弦定理把(b+a)(sinB-sinA)=asinB角的正弦转化成边的问题,然后联立方程求得b2=a2+c2,推断出三角形为直角三角形.
(2)利用正弦定理化简所求式子,将C的度数代入,用A表示出B,整理后利用余弦函数的值域即可确定出范围.
解答: 解:(1)由
a+b
a
=
sinB
sinB-sinA
,可得cos2C+cosC=1-cos(A-B)
得cosC+cos(A-B)=1-cos2C,cos(A-B)-cos(A+B)=2sin2C,
即sinAsinB=sin2C,根据正弦定理,ab=c2,①,
又由正弦定理及(b+a)(sinB-sinA)=asinB可知b2-a2=ab,②,由①②得b2=a2+c2
所以△ABC是直角三角形,且B=90°;
(2)由正弦定理化简
a+c
b
=
sinA+sinC
sinB
=sinA+sinC=sinA+cosA=
2
sin(A+45°),
2
2
≤sin(A+45°)≤1,A∈(0,
π
2
)即1<
2
sin(A+45°)
2

a+c
b
的取值范围是(1,
2
].
点评:本题主要考查了三角形的形状的判断,正弦定理的应用.考查了学生分析问题和解决问题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网