题目内容
【题目】
的三个内角
,
,
所对的边分别为
,
,
,
.
(1)求
的大小;
(2)若
为锐角三角形,求函数
的取值范围;
(3)现在给出下列三个条件:①
;②
;③
,试从中再选择两个条件以确定
,求出所确定的
的面积.
【答案】(1)
;(2)
;(3)选择①②,
或选择①③,
.
【解析】
试题(1)因为
,切化弦,边化角, 根据
,化简整理得
,
; (2)因为
,所以
,把
用
表示,得关于
的三角函数
,再根据
的范围,求出函数
的取值范围即得函数
的取值范围;(3)方案一:选择①②,可确定
,因为
,
,
,由余弦定理,得
,利用
得
的面积.
方案二:选择①③,可确定
,因为
,
或
,
,又
,由正弦定理得边
,利用
得
的面积.
试题解析:(1)因为
,由正弦定理,![]()
因为
,
,所以![]()
所以
,![]()
(2)因为
,
,所以![]()
,
又
为锐角三角形,![]()
所以![]()
(3)方案一:选择①②,可确定
,因为
,
,![]()
由余弦定理,得:![]()
整理得:
,
,![]()
所以![]()
方案二:选择①③,可确定
,
,![]()
又![]()
由正弦定理![]()
所以![]()
(选择②③不能确定三角形)
练习册系列答案
相关题目
【题目】某校高三共有1000位学生,为了分析某次的数学考试成绩,采取随机抽样的方法抽取了50位高三学生的成绩进行统计分析,得到如图所示频数分布表:
分组 |
|
|
|
|
|
频数 | 3 | 11 | 18 | 12 | 6 |
(1)根据频数分布表计算成绩在
的频率并计算这组数据的平均值
(同组的数据用该组区间的中点值代替);
(2)用分层抽样的方法从成绩在
和
的学生中共抽取5人,从这5人中任取2人,求成绩在
和
中各有1人的概率.