题目内容
(1)化简:
.
(2)已知:sinαcosα=
,且
<α<
,求cosα-sinα的值.
| ||
|
(2)已知:sinαcosα=
| 1 |
| 4 |
| π |
| 4 |
| π |
| 2 |
(1)原式=
=
=
=1
(2)∵(sinα-cosα)2=sin2α-2sinαcosα+cos2α
=(sin2α+cos2α)-2sinαcosα;
又∵sin2α+cos2α=1,sinαcosα=
∴(sinα-cosα)2=1-2×
=
∵
<α<
∴cosα-sinα=-
| ||
|
| ||
| sin10°-cos10° |
| cos10°-sin10° |
| sin10°-cos10° |
(2)∵(sinα-cosα)2=sin2α-2sinαcosα+cos2α
=(sin2α+cos2α)-2sinαcosα;
又∵sin2α+cos2α=1,sinαcosα=
| 1 |
| 4 |
∴(sinα-cosα)2=1-2×
| 1 |
| 4 |
| 1 |
| 2 |
∵
| π |
| 4 |
| π |
| 2 |
∴cosα-sinα=-
| ||
| 2 |
练习册系列答案
相关题目