题目内容

19.设数列{an}满足:a1+$\frac{{a}_{2}}{2}$+$\frac{{a}_{3}}{{2}^{2}}$+…+$\frac{{a}_{n}}{{2}^{n-1}}$=2n,n∈N*
(1)求数列{an}的通项公式an
(2)设bn=${log}_{\sqrt{2}}$an,数列{anbn}的前n项和为Sn,求Sn

分析 (1)利用递推关系即可得出;
(2)bn=${log}_{\sqrt{2}}$an=2n,可得anbn=n•2n+1,利用“错位相减法”与等比数列的前n项和公式即可得出.

解答 解:(1)∵数列{an}满足:a1+$\frac{{a}_{2}}{2}$+$\frac{{a}_{3}}{{2}^{2}}$+…+$\frac{{a}_{n}}{{2}^{n-1}}$=2n,n∈N*
∴当n=1时,a1=2;n≥2时,a1+$\frac{{a}_{2}}{2}$+$\frac{{a}_{3}}{{2}^{2}}$+…+$\frac{{a}_{n-1}}{{2}^{n-2}}$=2(n-1).可得$\frac{{a}_{n}}{{2}^{n-1}}$=2,∴an=2n
当n=1时也成立,∴an=2n
(2)bn=${log}_{\sqrt{2}}$an=2n,
∴anbn=n•2n+1
∴数列{anbn}的前n项和为Sn=22+2×23+3×24+…+n•2n+1
∴2Sn=23+2×24+…+(n-1)•2n+1+n•2n+2
∴-Sn=22+23+…+2n+1-n•2n+2=$\frac{4({2}^{n}-1)}{2-1}$-n•2n+2=(1-n)•2n+2-4,
∴Sn=(n-1)•2n+2+4.

点评 本题考查了“错位相减法”与等比数列的前n项和公式、递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网