题目内容

16.已知正项数列{an}的前n项和为Sn,对任意n∈N*,an+1(an+1-2)=an(an+2)且S3=12.
(Ⅰ)证明:数列{an}为等差数列,并求数列{an}的通项公式;
(Ⅱ)若${b}_{n}=\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Tn

分析 (Ⅰ)由已知数列递推式可得(an+1+an)(an+1-an)=2(an+1+an),又an>0,得an+1-an=2,可得数列{an}是公差为2的等差数列,代入等差数列的通项公式得答案;
(Ⅱ)把求数列{an}的通项公式代入${b}_{n}=\frac{1}{{a}_{n}{a}_{n+1}}$,然后利用裂项相消法求数列{bn}的前n项和Tn

解答 (Ⅰ)证明:由an+1(an+1-2)=an(an+2),得${{a}_{n+1}}^{2}-{{a}_{n}}^{2}=2{a}_{n+1}+2{a}_{n}$,
∴(an+1+an)(an+1-an)=2(an+1+an),
又an>0,∴an+1+an>0,则an+1-an=2.
∴数列{an}是公差为2的等差数列.
又S3=12,∴3a1+6=12,得a1=2.
∴an=2+2(n-1)=2n;
(Ⅱ)解:由(Ⅰ)知,${b}_{n}=\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{2n×2(n+1)}=\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$.
∴Tn=b1+b2+…+bn=$\frac{1}{4}[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})+(\frac{1}{3}-\frac{1}{4})+…+(\frac{1}{n}-\frac{1}{n+1})]$
=$\frac{1}{4}(1-\frac{1}{n+1})=\frac{n}{4n+4}$.

点评 本题考查数列递推式,考查了等差关系的确定,训练了裂项相消法求数列的前n项和,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网