题目内容
17.已知O为原点,双曲线$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0)上有一点P,过P作两条渐近线的平行线,且与两渐近线的交点分别为A,B,若平行四边形OBPA的面积为1,则双曲线的离心率为( )| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\frac{\sqrt{5}}{2}$ | D. | $\frac{2\sqrt{3}}{3}$ |
分析 求出|OA|,P点到OA的距离,利用平行四边形OBPA的面积为1,求出a,可得c,即可求出双曲线的离心率.
解答 解:渐近线方程是:x±ay=0,设P(m,n)是双曲线上任一点,
过P平行于OB:x+ay=0的方程是:x+ay-m-an=0与OA方程:x-ay=0交点是A($\frac{m+an}{2}$,$\frac{m+an}{2a}$),
|OA|=|$\frac{m+an}{2}$|$\sqrt{1+\frac{1}{{a}^{2}}}$,P点到OA的距离是:d=$\frac{|m-an|}{\sqrt{1+{a}^{2}}}$
∵|OA|•d=1,
∴|$\frac{m+an}{2}$|$\sqrt{1+\frac{1}{{a}^{2}}}$•$\frac{|m-na|}{\sqrt{1+{a}^{2}}}$=1,
∵$\frac{{m}^{2}}{{a}^{2}}$-n2=1,
∴a=2,∴双曲线的离心率为$\frac{\sqrt{5}}{2}$.
故选:C.
点评 本题考查双曲线的方程与性质,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目
7.下列命题正确的是( )
| A. | 经过三点确定一个平面 | |
| B. | 经过一条直线和一个点确定一个平面 | |
| C. | 三条平行直线必共面 | |
| D. | 两两相交且不共点的三条直线确定一个平面 |