题目内容
20.在△ABC中,若b=2,A=120°,三角形的面积$S=2\sqrt{3}$,则a=2$\sqrt{7}$.分析 根据三角形面积公式求出c的值,再由余弦定理求出求出a的值.
解答 解:△ABC中,b=2,A=120°,
三角形的面积为$S=2\sqrt{3}$,
∴$\frac{1}{2}$bc•sinA=$\frac{1}{2}$•2c•sin120°=$\frac{\sqrt{3}}{2}$c=2$\sqrt{3}$;
解得c=4;
由余弦定理得a2=b2+c2-2bccosA
=22+42-2×2×4×cos120°
=28,
解得a=$2\sqrt{7}$.
故答案为:2$\sqrt{7}$.
点评 本题考查了三角形面积公式和余弦定理的应用问题,是基础题.
练习册系列答案
相关题目
10.下列说法正确的是( )
| A. | “x2+x-2>0”是“x>1”的充分不必要条件 | |
| B. | 命题“?x∈R,使得2x2-1<0”的否定是“?x∈R,均有2x2-1>0” | |
| C. | “若am2<bm2,则a<b”的逆否命题为真命题 | |
| D. | 命题“若$x=\frac{π}{4},则tanx=1$”的逆命题为真命题 |
5.某县城高中为了走读学生的上下学交通安全,从学生的身心健康角度出发,决定禁止学生骑电瓶车到校,改骑自行车或坐公交车.在禁骑之前,对骑电瓶车的学生家长通过致函、家长会等方式进行了问卷调查.从家长的支持禁骑或不支持禁骑、家长的学历(以父、母中较高的学历为准)等数据中随机地抽取了100份进行统计如表,学历分为高中以上(含高中毕业)和高中以下(不含高中毕业).
(1)判断能否有99.9%的把握认为“不支持禁骑”与“学历”有关.
(2)从抽取出来的不支持学校禁骑决定的学生家长(每位学生只派一位家长参与)中任取三位,取到的家长学历为“高中以上”的人数记为随机变量X,求X的分布列及期望EX.
附:K2=$\frac{{n(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$,
| 高中以下 | 高中以上 | 合计 | |
| 支持 | 22 | 68 | 90 |
| 不支持 | 8 | 2 | 10 |
| 合计 | 30 | 70 | 100 |
(2)从抽取出来的不支持学校禁骑决定的学生家长(每位学生只派一位家长参与)中任取三位,取到的家长学历为“高中以上”的人数记为随机变量X,求X的分布列及期望EX.
附:K2=$\frac{{n(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$,
| P(K2≤k) | 0.010 | 0.005 | 0.001 |
| k | 6.635 | 7.879 | 10.828 |