题目内容

已知a为实数,

⑴求导数

⑵若,求在[-2,2] 上的最大值和最小值;

⑶若在(-∞,-2)和(2,+∞)上都是递增的,求a的取值范围。

 

【答案】

⑵f(x)在[-2,2]上的最大值为最小值为

⑶a的取值范围是[-2,2]. 

【解析】

试题分析:⑴由原式得

⑵由 得,此时有.

或x="-1" , 又

所以f(x)在[-2,2]上的最大值为最小值为

⑶解法一:的图象为开口向上且过点(0,-4)的抛物线,由条件得

 ∴-2≤a≤2.

所以a的取值范围为[-2,2].

解法二:令 由求根公式得:

所以上非负.

由题意可知,当x≤-2或x≥2时, ≥0,

从而x1≥-2,  x2≤2,

 解不等式组得-2≤a≤2.

∴a的取值范围是[-2,2]. 

考点:导数计算,利用导数研究函数的单调性、极值、最值。

点评:中档题,此类问题较为典型,是导数应用的基本问题。在某区间,导函数值非负,函数为增函数,导函数值非正,函数为减函数。求最值应遵循“求导数,求驻点,计算极值及端点函数值,比较确定最值”。

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网