题目内容
(本小题满分12分)己知A、B、C是椭圆C:
(a>b>0)上的三点,其中点A的坐标为
,BC 过椭圆的中心,且
,
.
![]()
(1)求椭圆C的方程;
(2)过点(0,t)的直线l(斜率存在时)与椭圆C交于P,Q两点,设D为椭圆C与y轴负半轴的交点,且
,求实数t的取值范围.
有一种密码,明文由三个字母组成,密码由明文的这三个字母对应的五个数字组成.编码规则如下表.明文由表中每一排取一个字母组成,且第一排取的字母放在第一位,第二排取的字母放在第二位,第三排取的字母放在第三位,对应的密码由明文所取的三个字母对应的数字按相同的次序排成一组组成.(如:明文取的三个字母为AFP,则与它对应的五个数字(密码)就为11223)
第一排 | 明文字母 | A | B | C |
密码数字 | 11 | 12 | 13 | |
第二排 | 明文字母 | E | F | G |
密码数字 | 21 | 22 | 23 | |
第三排 | 明文字母 | M | N | P |
密码数字 | 1 | 2 | 3 |
(1)假设密码是11211,求这个密码对应的明文;
(2)设随机变量
表示密码中所含不同数字的个数.
①求
;②求随机变量
的分布列和数学期望.
(本小题12分)根据国家环保部新修订的《环境空气质量标准》规定:居民区PM2.5的年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.某城市环保部门随机抽取了一居民区去年20天PM2.5的24小时平均浓度的监测数据,数据统计如下:
]
组别 | PM2.5浓度(微克/立方米) | 频数(天) | 频率 |
第一组 |
| 3 | 0.15 |
第二组 |
| 12 | 0.6 |
第三组 |
| 3 | 0.15 |
第四组 |
| 2 | 0.1 |
(Ⅰ)从样本中PM2.5的24小时平均浓度超过50微克/立方米的5天中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率;
(Ⅱ)求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由.