题目内容
在△ABC中,记向量
=
+
,
=
+
,且∠A=120°,则
,
的夹角为( )
| m |
| ||
|
|
| ||
|
|
| n |
| ||
|
|
| ||
|
|
| m |
| n |
分析:特殊值法,令B=C=30°,2求出
•
和|
|、|
|,根据向量的数量积求向量的夹角公式,代入即可求得结果.
| m |
| n |
| m |
| n |
解答:解:令B=C=30°,
•
=(
+
)•(
+
)
=
•
+
•
+
•
+
•
=
-
-
-
=2-
=
.
|
|2=(
+
)2=
+
+2
•
=4+
-4
=
,
|
|2=4+
-4
=
,
∴|
|||
|=
,
cos<
,
>=
,
∴
,
的夹角60°.
故选B.
| m |
| n |
| ||
|
|
| ||
|
|
| ||
|
|
| ||
|
|
=
| ||
|
|
| ||
|
|
| ||
|
|
| ||
|
|
| ||
|
|
| ||
|
|
| ||
|
|
| ||
|
|
=
| 1 |
| cosA |
| 1 |
| cosA |
| 1 |
| cosA |
| 1 |
| cosCcosB |
| 1 |
| cosCcosB |
| 2 |
| 3 |
|
| m |
| ||
|
|
| ||
|
|
| 1 |
| (cosA)2 |
| 1 |
| (cosC)2 |
| ||
|
|
| ||
|
|
=4+
| 1 |
| (cosC)2 |
| cosB |
| cosC |
| 4 |
| 3 |
|
| n |
| 1 |
| (cosB)2 |
| cosC |
| cosB |
| 4 |
| 3 |
∴|
| m |
| n |
| 4 |
| 3 |
cos<
| m |
| n |
| 1 |
| 2 |
∴
| m |
| n |
故选B.
点评:此题是个基础题.考查数量积表示两个向量的夹角,以及灵活应用知识分析解决问题的能力和计算能力.
练习册系列答案
相关题目