题目内容
现有4个袋子,其中3个袋中均装有3个白球,2个黑球,1个袋中装有2个白球,1个黑球,从4个袋中分别随机地取出1个球,设X为取出的白球个数,则X的数学期望为 .
考点:离散型随机变量的期望与方差
专题:概率与统计
分析:由题意知X=0,1,2,3,4,分别求出相应的概率,由此能求出X的数学期望.
解答:
解:由题意知X=0,1,2,3,4,
P(X=0)=(
)3×
=
,
P(X=1)=(
)3×
+
(
)(
)2×
=
,
P(X=2)=
(
)(
)2×
+
(
)2(
)×
=
,
P(X=3)=
(
)2(
)×
+
(
)3×
=
,
P(X=4)=
(
)3×
=
,
∴EX=0×
+1×
+2×
+3×
+4×
=
.
故答案为:
.
P(X=0)=(
| 2 |
| 5 |
| 1 |
| 3 |
| 8 |
| 375 |
P(X=1)=(
| 2 |
| 5 |
| 2 |
| 3 |
| C | 1 3 |
| 3 |
| 5 |
| 2 |
| 5 |
| 1 |
| 3 |
| 52 |
| 375 |
P(X=2)=
| C | 1 3 |
| 3 |
| 5 |
| 2 |
| 5 |
| 2 |
| 3 |
| C | 2 3 |
| 3 |
| 5 |
| 2 |
| 5 |
| 1 |
| 3 |
| 126 |
| 375 |
P(X=3)=
| C | 2 3 |
| 3 |
| 5 |
| 2 |
| 5 |
| 2 |
| 3 |
| C | 3 3 |
| 3 |
| 5 |
| 1 |
| 3 |
| 135 |
| 375 |
P(X=4)=
| C | 3 3 |
| 3 |
| 5 |
| 2 |
| 3 |
| 54 |
| 375 |
∴EX=0×
| 8 |
| 375 |
| 52 |
| 375 |
| 126 |
| 375 |
| 135 |
| 375 |
| 54 |
| 375 |
| 37 |
| 15 |
故答案为:
| 37 |
| 15 |
点评:本题考查离散型随机变量的数学期望的求法,是中档题,解题时要认真审题.
练习册系列答案
相关题目
A、
| ||
B、
| ||
C、
| ||
D、
|
在平面内,已知|
|=1,|
|=
,
•
=0,∠AOC=30°,设
=m
+n
,(m,n∈R),则
等于( )
| OA |
| OB |
| 3 |
| OA |
| OB |
| OC |
| OA |
| OB |
| m |
| n |
A、±
| ||||
B、±
| ||||
C、±
| ||||
| D、±3 |