题目内容

7.定义“等和数列”:在一个数列,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{an}是等和数,且a1=2,公和为5,则数列{an}的前n项和Sn=$\left\{\begin{array}{l}{\frac{5n}{2},n为偶数}\\{\frac{5n-1}{2},n为奇数}\end{array}\right.$.

分析 由数列{an}是等和数,且a1=2,公和为5,可得5=a1+a2,解得a2=3.对n分类讨论即可得出.

解答 解:由数列{an}是等和数,且a1=2,公和为5,
∴5=a1+a2=2+a2,解得a2=3.
当n=2k(k∈N*)时,数列{an}的前n项和Sn=(a1+a2)+(a3+a4)+…+(a2k-1+a2k)=5+5+…+5=5k=$\frac{5n}{2}$.
当n=2k(k∈N*)时,数列{an}的前n项和Sn=(a1+a2)+(a3+a4)+…+(a2k-3+a2k-2)+a2k-1=$\frac{5(n-1)}{2}$+2=$\frac{5n-1}{2}$.
∴Sn=$\left\{\begin{array}{l}{\frac{5n}{2},n为偶数}\\{\frac{5n-1}{2},n为奇数}\end{array}\right.$.
故答案为:$\left\{\begin{array}{l}{\frac{5n}{2},n为偶数}\\{\frac{5n-1}{2},n为奇数}\end{array}\right.$.

点评 本题考查了新定义“等和数列”的性质、数列求和方法,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网