题目内容
10.若数列{an}满足a11=$\frac{1}{52}$,$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=5(n∈N*),则a1=$\frac{1}{2}$.分析 由$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=5,得到{$\frac{1}{{a}_{n}}$}是以5为公差的等差数列,即可得到$\frac{1}{{a}_{n}}$=$\frac{1}{{a}_{1}}$+5(n-1),代值计算即可.
解答 解:$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=5,
∴{$\frac{1}{{a}_{n}}$}是以5为公差的等差数列,
∴$\frac{1}{{a}_{n}}$=$\frac{1}{{a}_{1}}$+5(n-1),
∵a11=$\frac{1}{52}$,
∴$\frac{1}{{a}_{11}}$=$\frac{1}{{a}_{1}}$+5(11-1)=52,即$\frac{1}{{a}_{1}}$=2,
∴a1=$\frac{1}{2}$
故答案为:$\frac{1}{2}$
点评 本题考查了等差数列的通项公式,以及首项的求法,属于基础题.
练习册系列答案
相关题目
20.已知点(a,$\frac{1}{3}$)在幂函数f(x)=(a2-6a+10)xb的图象上,则函数f(x)是( )
| A. | 奇函数 | B. | 偶函数 | ||
| C. | 定义域内的减函数 | D. | 定义域内的增函数 |
15.动点P(x,y)到点O(0,0)的距离是到点A(3,-3)的距离的$\sqrt{2}$倍,则点P的轨迹方程是( )
| A. | x2-12y+y2+12y+36=0 | B. | x2+6x+y2-12y+36=0 | ||
| C. | x2+12x+y2-12y+36=0 | D. | x2-6x+y2+6y+18=0 |