题目内容
5.| A. | i≤1009 | B. | i>1009 | C. | i≤1010 | D. | i>1010 |
分析 分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S的值.
解答 解:程序运行过程中,各变量值如下表所示:
第一次循环:S=0+1,i=1,
第二次循环:S=1+$\frac{1}{3}$,i=2,
第三次循环:S=1+$\frac{1}{3}$+$\frac{1}{5}$,i=3,…
依此类推,第1009次循环:S=1+$\frac{1}{3}$+$\frac{1}{5}$+…+$\frac{1}{2017}$,i=1010,此时不满足条件,退出循环
其中判断框内应填入的条件是:i≤1009,
故选:A.
点评 算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.
练习册系列答案
相关题目
18.已知数列{an}是递增的等比数列,a1+a4=9,a2a3=8,则数列{an}的前2016项之和S2016=( )
| A. | 22016 | B. | 22015-1 | C. | 22016-1 | D. | 22017-1 |
18.下列函数既是奇函数,又在[-1,1]上单调递增是( )
| A. | f(x)=|sinx| | B. | f(x)=ln$\frac{2-x}{2+x}$ | C. | f(x)=$\frac{1}{2}$(ex-e-x) | D. | f(x)=ln($\sqrt{{x}^{2}+1}$-x) |
20.复数z=(1-i)2+$\frac{2}{1+i}$(i为虚数单位)在复平面内对应的点在( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
10.抛物线C1:x2=2py(p>0)的焦点与双曲线C2:$\frac{{x}^{2}}{3}{-y}^{2}=1$的右焦点的连线在第一象限内与C1交于点M,若C1在点M处的切线平行于C2的一条渐近线,则p=( )
| A. | $\frac{\sqrt{3}}{16}$ | B. | $\frac{\sqrt{3}}{8}$ | C. | $\frac{2\sqrt{3}}{3}$ | D. | $\frac{4\sqrt{3}}{3}$ |