题目内容

设圆锥曲线C的两个焦点分别为F1、F2,若曲线C上存在点P满足|PF1|:|F1F2|:|PF2|=4:3:2,则曲线C的离心率等于(  )
A、
2
3
3
2
B、
2
3
或2
C、
1
2
或2
D、
1
2
3
2
考点:双曲线的简单性质,椭圆的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:根据|PF1|:|F1F2|:|PF2|=4:3:2,不妨设|PF1|=4m,|F1F2|=3m,|PF2|=2m,再进行分类讨论,确定曲线的类型,从而求出曲线r的离心率.
解答: 解:根据|PF1|:|F1F2|:|PF2|=4:3:2,不妨设|PF1|=4m,|F1F2|=3m,|PF2|=2m,
∴|PF1|+|PF2|=6m>|F1F2|=3m,此时曲线为椭圆,且曲线r的离心率等于
3m
6m
=
1
2

|PF1|-|PF2|=2m<|F1F2|=3m,此时曲线为双曲线,且曲线r的离心率等于
3m
2m
=
3
2

故选:D.
点评:本题主要考查了圆锥曲线的共同特征.关键是利用圆锥曲线的定义来解决.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网