题目内容

6.已知函数f(x)的定义域为实数集R,
(1)若函数f(x)=2xsin(πx),证明f(x+2)=4f(x);
(2)若f(x+T)=kf(x)(k>0,T>0),若f(x)=axφ(x)(其中a为正的常数),试证明函数φ(x)是以T为周期的周期函数;
(3)若f(x+6)=$\sqrt{2}$f(x),且当x∈[-3,3]时,f(x)=$\frac{1}{10}$x(x2-9),记Sn=f(2)+f(6)+f(10)+…+f(4n-2)n∈N*,求使得S1、S2、S3…Sn小于1000都成立的最大整数n.

分析 (1)根据条件进行证明即可.
(2)结合条件,进行转化证明.
(3)将f(4n-2)分成三组,分别计算出每组数列的特点,利用等比数列的求和公式进行计算即可.

解答 证明:(1)若f(x)=2xsin(πx),
∴f(x+2)=2x+2sin(πx+2π)=4•2xsin(πx)=4f(x);
(2)若f(x)=axφ(x),
则,满足f(x+T)=kf(x),
即ax+Tφ(x+T)=kaxφ(x),
即aTφ(x+T)=kφ(x),
即φ(x+T)=ka-Tφ(x),
故函数φ(x)是以T为周期的周期函数.
(3)∵若f(x+6)=$\sqrt{2}$f(x),且当x∈[-3,3]时,f(x)=$\frac{1}{10}$x(x2-9),
∴f(2)=-1,f(14)=f(12+2)=($\sqrt{2}$)2f(2)=-2,
则f(2),f(14),f(26)…构成以-1为首项,公比q=2的等比数列,
f(6)=$\sqrt{2}$f(0)=0,
即f(6)=f(18)=f(6k)=…=0,
f(10)=f(12-2)($\sqrt{2}$)2f(-2)=2,
f(22)=f(12+10)=($\sqrt{2}$)2f(10)=2×2=4,
则f(10),f(22),f(34)…构成以2为首项,公比q=2的等比数列,
每相邻三项为一组设n=3k,
则Sn=f(2)+f(6)+f(10)+…+f(4n-2)=$\frac{-1•(1-{2}^{k})}{1-2}$+$\frac{2(1-{2}^{k})}{1-2}$=2k-1+2•2k-2=3•2k-3,
当k=8时,Sn=765,
即当k=8时,n=24,
则当n=25时,f(4n-2)=f(4×25-2)=f(98)=f(16×6+2)=($\sqrt{2}$)16f(2)=-256,
此时S25=765-256=509,
当n=26时,f(4n-2)=f(4×26-2)=f(102)=f(17×6)=0,
此时S26=765-256=509,
当n=27,f(4n-2)=f(4×27-2)=f(106)=f(18×6-2)=($\sqrt{2}$)18f(-2)=512,
此时S27=509+512=1021,
故使得S1、S2、S3…Sn小于1000都成立的最大整数n为26

点评 本题主要考查函数的性质,以及函数与数列的综合,考查学生的运算能力,综合性较强,难度较大.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网