题目内容
9.已知变量x和y满足关系$\widehat{y}$=0.7x+0.35,变量y与z负相关,下列结论中正确的是( )| A. | x与y正相关,x与z负相关 | B. | x与y正相关,x与z正相关 | ||
| C. | x与y负相关,x与z负相关 | D. | x与y负相关,x与z正相关 |
分析 根据y=0.1x-10,得出x和y正相关,由z与y负相关,得出x与z负相关.
解答 解:∵变量x和y满足关系$\widehat{y}$=0.7x+0.35,
∴变量x和y是正相关关系;
又变量z与y负相关,
∴变量x与z负相关.
故选:A.
点评 本题考查了两个变量线性相关关系的判断问题,是基础题目.
练习册系列答案
相关题目
19.在△ABC中,a,b,c分别为角A,B,C所对的边,若b=$\sqrt{2}$,a=2,B=$\frac{π}{4}$,则c=( )
| A. | $\frac{1}{2}$ | B. | $\sqrt{2}$ | C. | 2 | D. | $\sqrt{3}$ |
20.已知tan(α+β)=$\frac{2}{5}$,tan($β+\frac{π}{4}$)=$\frac{1}{4}$,则tan($α-\frac{π}{4}$)的值为( )
| A. | $\frac{1}{6}$ | B. | $\frac{22}{13}$ | C. | $\frac{3}{22}$ | D. | $\frac{13}{18}$ |
17.在△ABC中,B=45°,C=60°,c=2,则b=( )
| A. | $\frac{{2\sqrt{6}}}{3}$ | B. | $\frac{{3\sqrt{6}}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
4.函数f(x)=x(x-c)2在x=1处有极小值,则实数c为( )
| A. | 3 | B. | 1 | C. | 1或3 | D. | -1 |
14.若实数a,b,c满足对任意实数x,y有3x+4y-5≤ax+by+c≤3x+4y+5,则( )
| A. | a+b-c的最小值为2 | B. | a-b+c的最小值为-4 | ||
| C. | a+b-c的最大值为4 | D. | a-b+c的最大值为6 |
1.在测试中,客观题难度的计算公式为${P_i}=\frac{R_i}{N}$,其中Pi为第i题的难度,Ri为答对该题的人数,N为参加测试的总人数.现对某校高三年级240名学生进行一次测试,共5道客观题.测试前根据对学生的了解,预估了每道题的难度,如表所示:
测试后,随机抽取了20名学生的答题数据进行统计,结果如下:
(Ⅰ)根据题中数据,估计这240名学生中第5题的实测答对人数;
(Ⅱ)从抽样的20名学生中随机抽取2名学生,记这2名学生中第5题答对的人数为X,求X的分布列和数学期望;
(Ⅲ)试题的预估难度和实测难度之间会有偏差.设${P_i}^′$为第i题的实测难度,请用Pi和${P_i}^′$设计一个统计量,并制定一个标准来判断本次测试对难度的预估是否合理.
| 题号 | 1 | 2 | 3 | 4 | 5 |
| 考前预估难度Pi | 0.9 | 0.8 | 0.7 | 0.6 | 0.4 |
| 题号 | 1 | 2 | 3 | 4 | 5 |
| 实测答对人数 | 16 | 16 | 14 | 14 | 4 |
(Ⅱ)从抽样的20名学生中随机抽取2名学生,记这2名学生中第5题答对的人数为X,求X的分布列和数学期望;
(Ⅲ)试题的预估难度和实测难度之间会有偏差.设${P_i}^′$为第i题的实测难度,请用Pi和${P_i}^′$设计一个统计量,并制定一个标准来判断本次测试对难度的预估是否合理.
15.在△ABC中,关于x的方程(1+x2)sinA+2xsinB+(1-x2)sinC=0无实数根,则△ABC的形状为( )
| A. | 锐角三角形 | B. | 钝角三角形 | C. | 直角三角形 | D. | 等边三角形 |
16.已知△ABC中,∠A=30°,2AB,BC分别是$2\sqrt{3}+\sqrt{11}$、$2\sqrt{3}-\sqrt{11}$的等差中项与等比中项,则△ABC的面积等于( )
| A. | $\frac{{\sqrt{3}}}{2}$ | B. | $\frac{\sqrt{3}}{4}$ | C. | $\frac{\sqrt{3}}{2}$或$\sqrt{3}$ | D. | $\frac{\sqrt{3}}{2}$或$\frac{{\sqrt{3}}}{4}$ |