题目内容

15.在△ABC中,已知∠A:∠B=1:2,角C的平分线CD把三角形面积分为4:3两部分,则cosA=(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{4}{5}$

分析 由A与B的度数之比,得到B=2A,且B大于A,可得出AC大于BC,利用角平分线定理根据角平分线CD将三角形分成的面积之比为4:3,得到BC与AC之比,再利用正弦定理得出sinA与sinB之比,将B=2A代入并利用二倍角的正弦函数公式化简,即可求出cosA的值.

解答 解:∵A:B=1:2,即B=2A,
∴B>A,
∴AC>BC,
∵角平分线CD把三角形面积分成4:3两部分,
∴由角平分线定理得:BC:AC=BD:AD=3:4,
∴由正弦定理$\frac{BC}{sinA}$=$\frac{AC}{sinB}$得:$\frac{sinA}{sinB}$=$\frac{3}{4}$,
整理得:$\frac{sinA}{sin2A}$=$\frac{sinA}{2sinAcosA}$=$\frac{3}{4}$,
则cosA=$\frac{2}{3}$.
故选:B.

点评 此题属于解三角形的题型,涉及的知识有:正弦定理,角平分线定理,以及二倍角的正弦函数公式,熟练掌握定理及公式是解本题的关键,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网