题目内容
1.抛物线${x^2}=\frac{1}{4}y$的焦点到准线的距离为( )| A. | 2 | B. | 4 | C. | $\frac{1}{8}$ | D. | $\frac{1}{2}$ |
分析 直接利用抛物线方程求解即可.
解答 解:抛物线${x^2}=\frac{1}{4}y$的焦点到准线的距离为:P=$\frac{1}{8}$.
故选:C.
点评 本题考查抛物线的简单性质的应用,基本知识的考查.
练习册系列答案
相关题目
9.观察下列不等式:
$1+\frac{1}{2^3}<\frac{7}{6}$,
$1+\frac{1}{2^3}+\frac{1}{3^3}<\frac{29}{24}$,
$1+\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}<\frac{49}{40}$,
$1+\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+\frac{1}{5^3}<\frac{37}{30}$,
….
照此规律,第五个不等式为$1+\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+\frac{1}{5^3}+\frac{1}{6^3}<$( )
$1+\frac{1}{2^3}<\frac{7}{6}$,
$1+\frac{1}{2^3}+\frac{1}{3^3}<\frac{29}{24}$,
$1+\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}<\frac{49}{40}$,
$1+\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+\frac{1}{5^3}<\frac{37}{30}$,
….
照此规律,第五个不等式为$1+\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+\frac{1}{5^3}+\frac{1}{6^3}<$( )
| A. | $\frac{26}{21}$ | B. | $\frac{29}{20}$ | C. | $\frac{67}{54}$ | D. | $\frac{95}{78}$ |