ÌâÄ¿ÄÚÈÝ
10£®ÔÚÖ±½Ç×ø±êϵxOyÖÐÒÑÖªÇúÏßC1£º$\left\{\begin{array}{l}{x=t+1}\\{y=1-2t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÓëÇúÏßC2£º$\left\{\begin{array}{l}{x=asin¦È}\\{y=3cos¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£¬a£¾0£©£®£¨1£©ÈôÇúÏßC1ÓëC2ÓÐÒ»¹«¹²µãÔÚxÖáÉÏ£¬ÇóaµÄÖµ£»
£¨2£©ÈôÇúÏßC1ÓëC2ÏཻÓÚA£¬BÁ½µã£¬ÇÒ|AB|=$\sqrt{5}$£¬ÇóaµÄÖµ£®
·ÖÎö £¨1£©ÏȰÑÇúÏßC1ºÍÇúÏßC2¶¼»¯ÎªÆÕͨ·½³Ì£¬ÓÉ´ËÄÜÇó³ö½á¹û£®
£¨2£©ÁªÁ¢ÇúÏßC1ºÍÇúÏßC2µÄÆÕͨ·½³Ì£¬ÀûÓÃÏÒ³¤¹«Ê½ÄÜÇó³ö½á¹û£®
½â´ð ½â£º£¨1£©¡ßÇúÏßC1£º$\left\{\begin{array}{l}{x=t+1}\\{y=1-2t}\end{array}\right.$£¨tΪ²ÎÊý£©»¯ÎªÆÕͨ·½³Ì£º2x+y-3=0£¬Áîy=0£¬
¿ÉµÃx=$\frac{3}{2}$£¬
ÇúÏßC2£º$\left\{\begin{array}{l}{x=asin¦È}\\{y=3cos¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£¬a£¾0£©»¯ÎªÆÕͨ·½³Ì£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{9}$=1
¡ßÁ½ÇúÏßÓÐÒ»¸ö¹«¹²µãÔÚxÖáÉÏ£¬
¡à$\frac{\frac{9}{4}}{{a}^{2}}$=1£¬½âµÃa=$\frac{3}{2}$£®
£¨2£©ÁªÁ¢$\left\{\begin{array}{l}{2x+y-3=0}\\{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{9}=1}\end{array}\right.$£¬ÏûÈ¥y£¬µÃ£¨4a2+9£©x2-12a2x=0£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôò${x}_{1}+{x}_{2}=\frac{12{a}^{2}}{4{a}^{2}+9}$£¬x1x2=0£¬
¡ß|AB|=$\sqrt{5}$£¬¡à$\sqrt{£¨1+4£©£¨\frac{12{a}^{2}}{4{a}^{2}+9}£©^{2}}$=$\sqrt{5}$£¬
½âµÃa=$\frac{3\sqrt{2}}{4}$»òa=-$\frac{3\sqrt{2}}{4}$£¨Éᣩ£®
¡à$a=\frac{3\sqrt{2}}{4}$£®
µãÆÀ ±¾Ì⿼²éÇúÏß·½³ÌÖвÎÊýÖµµÄÇ󷨣¬ÊÇ»ù´¡Ì⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâ²ÎÊý·½³ÌÓëÆÕͨ·½³ÌµÄ»¥»¯ºÍÏÒ³¤¹«Ê½µÄºÏÀíÔËÓã®
| A£® | 2 | B£® | 4 | C£® | $\frac{1}{8}$ | D£® | $\frac{1}{2}$ |
| A£® | 12 | B£® | 8 | C£® | 4 | D£® | 2 |
| A£® | y=x-1 | B£® | y=x${\;}^{\frac{1}{2}}$ | C£® | y=x${\;}^{-\frac{1}{3}}$ | D£® | y=x3 |
| A£® | $\frac{1}{2}$ | B£® | 2 | C£® | $\frac{1}{4}$ | D£® | 4 |
| A£® | $\frac{8}{15}$ | B£® | $\frac{16}{15}$ | C£® | $\frac{20}{31}$ | D£® | $\frac{40}{31}$ |