题目内容
12.分别求出适合下列条件的直线方程:(Ⅰ)经过点P(-3,2)且在x轴上的截距等于在y轴上截距的2倍;
(Ⅱ)经过直线2x+7y-4=0与7x-21y-1=0的交点,且和A(-3,1),B(5,7)等距离.
分析 (Ⅰ)分别讨论直线过原点和不过原点两种情况,设出直线方程,解出即可;(Ⅱ)先求出直线的交点坐标,设出直线方程,再根据点到直线的距离公式求出斜率k即可.
解答 解:(Ⅰ)当直线不过原点时,设所求直线方程为$\frac{x}{2a}$+$\frac{y}{a}$=1,
将(-3,2)代入所设方程,解得a=$\frac{1}{2}$,此时,直线方程为x+2y-1=0.
当直线过原点时,斜率k=-$\frac{2}{3}$,直线方程为y=-$\frac{2}{3}$x,即2x+3y=0,
综上可知,所求直线方程为x+2y-1=0或2x+3y=0.…(6分)
(Ⅱ)有$\left\{{\begin{array}{l}{2x+7y-4=0}\\{7x-21y-1=0}\end{array}}\right.$解得交点坐标为(1,$\frac{2}{7}$),
当直线l的斜率k存在时,设l的方程是y-$\frac{2}{7}$=k(x-1),即7kx-7y+(2-7k)=0,
由A、B两点到直线l的距离相等得$\frac{|-21k-7+(2-7k)|}{{\sqrt{49{k^2}+49}}}=\frac{|35k-49+(2-7k)|}{{\sqrt{49{k^2}+49}}}$,
解得k=$\frac{3}{4}$,当斜率k不存在时,即直线平行于y轴,方程为x=1时也满足条件.
所以直线l的方程是21x-28y-13=0或x=1.…(12分)
点评 本题考察了求直线方程问题,考察点到直线的距离公式,是一道中档题.
练习册系列答案
相关题目
2.若$\overrightarrow a=(1,1,k)$,$\overrightarrow b=(2,-1,1)$,$\overrightarrow a$与$\overrightarrow b$的夹角为60°,则k的值为( )
| A. | 0或-2 | B. | 0或2 | C. | -2 | D. | 2 |
20.已知集合M={(x,y)|x+y-2≤0,x≥0,y≥0},集合N={$(x,y)|y≤\sqrt{x},y≥0$},若点P∈M,则P∈M∩N的概率为( )
| A. | $\frac{7}{18}$ | B. | $\frac{1}{2}$ | C. | $\frac{7}{12}$ | D. | $\frac{3}{4}$ |
17.若方程x2+y2+x-y+m2=0表示圆,则实数m的取值范围是( )
| A. | $m<\frac{{\sqrt{2}}}{2}$ | B. | $-\frac{{\sqrt{2}}}{2}<m<\frac{{\sqrt{2}}}{2}$ | C. | $m<-\frac{{\sqrt{2}}}{2}$ | D. | $m>\frac{{\sqrt{2}}}{2}$ |
4.已知函数f(x)=ax3-6x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是( )
| A. | (-∞,-4) | B. | (4,+∞) | C. | (-∞,-4$\sqrt{2}$) | D. | (4$\sqrt{2}$,+∞) |
1.若反比例函数f(x)=$\frac{k}{x}$的图象在第一象限内单调递减,则k的取值范围( )
| A. | k≥0 | B. | k≤0 | C. | k>0 | D. | k<0 |
2.下列大小关系正确的是( )
| A. | ${3^{\frac{1}{3}}}>{4^{\frac{1}{3}}}$ | B. | 0.30.4>0.30.3 | C. | log76<log67 | D. | sin3>sin2 |