题目内容

1.如图,在△ABC中,AD是BC上的高,AE平分∠BAC,∠B=75°,∠C=45°,求∠DAE与∠AEC的度数.

分析 由∠B=75°,∠C=45°,利用三角形内角和求出∠BAC.又AE平分∠BAC,求出∠BAE、∠CAE.再利用AD是BC上的高在△ABD中求出∠BAD,此时就可以求出∠DAE.最后利用三角形的外角和内角的关系可以求出∠AEC.

解答 解:∵∠B+∠C+∠BAC=180°,∠B=75°,∠C=45°,
∴∠BAC=60°,
∵AE平分∠BAC,
∴∠BAE=∠CAE=$\frac{1}{2}$∠BAC=$\frac{1}{2}$×60°=30°,
∵AD是BC上的高,
∴∠B+∠BAD=90°,
∴∠BAD=90°-∠B=90°-75°=15°,
∴∠DAE=∠BAE-∠BAD=30°-15°=15°,
在△AEC中,∠AEC=180°-∠C-∠CAE=180°-45°-30°=105°.

点评 此题主要考查了三角形的内角,外角以及和它们相关的一些结论,图形比较复杂,对于学生的视图能力要求比较高.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网