题目内容

3.若z=$\frac{i}{2+i}$,则复数$\overline{z}$对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用复数的运算法则、几何意义即可得出.

解答 解:z=$\frac{i}{2+i}$=$\frac{i(2-i)}{(2+i)(2-i)}$=$\frac{1}{5}$+$\frac{2}{5}$i,
则复数$\overline{z}$=$\frac{1}{5}$-$\frac{2}{5}$i对应的点($\frac{1}{5}$,-$\frac{2}{5}$)在第四象限.
故选:D.

点评 本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网