题目内容

已知倾斜角为60°的直线 l过圆C:x2+2x+y2=0的圆心,则此直线l的方程是(  )
A、
3
x+y+1=0
B、x-
3
y+1=0
C、x+
3
y+1=0
D、
3
x-y+
3
=0
分析:把圆的方程化为标准形式,求出圆心坐标,求出直线的斜率,用点斜式求直线方程.
解答:解:圆C:x2+2x+y2=0 即 (x+1)2+y2=1,表示圆心C(-1,0),半径等于1的圆.
直线的斜率为 k=tan60°=
3
,用点斜式求得直线l的方程是  y-0=
3
(x+1)
,即
3
x-y+
3
=0

故选D.
点评:本题考查用点斜式求直线方程的方法,圆的标准方程,求出圆心坐标和直线的斜率,是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网