题目内容
已知cos(75°+α)=
,其中-180°<α<-90°,求sin(105°-α)+cos(375°-α)的值.
| 1 |
| 3 |
原式=sin(105°-α)+cos(375°-α)=sin(75°+α)+cos(15°-α)=2sin(75°+α),
∵cos(75°+α)=
,且-105°<75°+α<-15°,
∴sin(75°+α)<0,∴sin(75°+α)=-
=-
,
故 sin(105°-α)+cos(375°-α)=-
.
∵cos(75°+α)=
| 1 |
| 3 |
∴sin(75°+α)<0,∴sin(75°+α)=-
| 1-cos2(75°+α) |
2
| ||
| 3 |
故 sin(105°-α)+cos(375°-α)=-
| 4 |
| 3 |
| 2 |
练习册系列答案
相关题目