题目内容

已知cos(75°+α)=
13
,α是第三象限角,求cos(15°-α)+sin(α-15°)的值.
分析:先判断α+75°的范围,然后求出其正弦值,再利用诱导公式求cos(15°-α)+sin(α-15°)的值.观察发现,α+75°与15°-α互余,如此求法就明朗了.
解答:解:∵α是第三象限角,∴k•360°+255°<α+75°<k•360°+345°(k∈Z),
cos(75°+α)=
1
3
,∴α+75°是第四象限角,
sin(75°+α)=-
1-(
1
3
)
2
=-
2
2
3

∴原式=cos(15°-α)-sin(15°-α)=sin(α+75°)-cos(α+75°)=-
2
2
+1
3
点评:考查同角三角函数的基本关系与诱导公式,属于三角函数中的一类具有一定综合性的训练题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网