题目内容

如图,已知⊙O的直径AB=3,点C为⊙O上异于A,B的一点,VC⊥平面ABC,且VC=2,点M为线段VB的中点.
(I)求证:BC⊥平面VAC;
(Ⅱ)若AC=1,求二面角M-VA-C的余弦值.
考点:用空间向量求平面间的夹角,直线与平面垂直的判定
专题:空间位置关系与距离
分析:(Ⅰ)由线面垂直得VC⊥BC,由直径性质得AC⊥BC,由此能证明BC⊥平面VAC.
(Ⅱ)分别以AC,BC,VC所在直线为x轴,y轴,z轴,建立空间直角坐标系,利用向量法能求出二面角M-VA-C的余弦值.
解答: (Ⅰ)证明:∵VC⊥平面ABC,BC?平面ABC,
∴VC⊥BC,
∵点C为⊙O上一点,且AB为直径,
∴AC⊥BC,
又∵VC,AC?平面VAC,VC∩AC=C,
∴BC⊥平面VAC.
(Ⅱ)解:由(Ⅰ)得BC⊥VC,VC⊥AC,AC⊥BC,
分别以AC,BC,VC所在直线为x轴,y轴,z轴,
建立空间直角坐标系,
则A(1,0,0),V(0,0,2),B(0,2
2
,0),
VA
=(1,0,-2),
AB
=(-1,2
2
,0)

设平面VAC的法向量
m
=
CB
=(0,2
2
,0),
设平面VAM的法向量
n
=(x,y,z),
x-2z=0
-x+2
2
y=0
,取y=
2
,得
x=4
z=2

n
=(4,
2
,2)

∴cos<
m
n
>=
4
2
2
×
16+2+4
=
11
11

∴二面角M-VA-C的余弦值为
11
11
点评:本题考查直线与平面垂直的证明,考查二面角的余弦值的求法,解题时要认真审题,注意向量法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网