题目内容

18.在半径为r的圆O上的弓形中,底AB=$\sqrt{2}$r,C为劣弧$\widehat{AB}$上的一点,且CD⊥AB,D为垂足,点C圆O上运动,问点C在什么位置时,△ADC的面积有最大值?

分析 先表示出△ACD的面积,再用基本不等式求出最大面积.

解答 解:∵半径为r的圆O上的弓形中,底AB=$\sqrt{2}$r,
∴∠AOB=90°.
连接OC,设∠CAB=α,则∠BOC=2α,∠AOC=90°-2α,
∴AC=2rsin(45°-α),
∴AD=ACcosα,
∴△ACD的面积S=$\frac{1}{2}×AC×AD×sinα$=r2sin2(45°-α)sin2α
=$\frac{{r}^{2}}{2}×(1-sin2α)sin2α$≤$\frac{{r}^{2}}{2}×(\frac{1}{2})^{2}$=$\frac{{r}^{2}}{8}$.
当且仅当1-sin2α=sin2α,即sin2α=$\frac{1}{2}$,
∴α=$\frac{π}{12}$时,△ACD的面积最大,最大面积为$\frac{{r}^{2}}{8}$.

点评 本题考查三角形面积的计算,考查三角函数知识,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网