题目内容
设数列{an}满足:a1=2,an+1=1-
,记数列{an}的前n项之积为Pn,则P2013=
| 1 | an |
-1
-1
.分析:根据a1=2,an+1=1-
计算数列的前几项,推出数列的周期,利用周期性可得答案.
| 1 |
| an |
解答:解:∵a1=2,an+1=1-
,
∴a2=1-
=
,a3=1-
=1-2=-1,
a4=1-
=1-(-1)=2,a5=1-
=1-
,…,
∴{an}为周期数列,周期为3,
又a1a2a3=2×
×(-1)=-1,
∴P2013=P3×671=(a1a2a3)671=-1,
故答案为:-1.
| 1 |
| an |
∴a2=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| a2 |
a4=1-
| 1 |
| a3 |
| 1 |
| a4 |
| 1 |
| 2 |
∴{an}为周期数列,周期为3,
又a1a2a3=2×
| 1 |
| 2 |
∴P2013=P3×671=(a1a2a3)671=-1,
故答案为:-1.
点评:本题考查数列的递推式及数列的函数特性,属中档题,由递推式推导数列的周期是解决本题的关键所在.
练习册系列答案
相关题目