ÌâÄ¿ÄÚÈÝ
3£®ÒÑÖª$\overrightarrow{a}$=£¨$\sqrt{3}$sin£¨¦Ð+¦Øx£©£¬cos¦Øx£©£¬$\overrightarrow{b}$=£¨sin£¨$\frac{3}{2}$¦Ð-¦Øx£©£¬-cos¦Øx£©£¬¦Ø£¾0£®Éèf£¨x£©=$\overrightarrow{a}$•$\overrightarrow{b}$µÄ×îСÕýÖÜÆÚΪ¦Ð£®£¨¢ñ£©Çóf£¨x£©µÄµ¥µ÷ÔöÇø¼ä£»
£¨¢ò£©µ±x¡Ê£¨-$\frac{¦Ð}{3}$£¬$\frac{¦Ð}{6}$£©Ê±£¬Çóf£¨x£©µÄÖµÓò£»
£¨¢ó£©ÇóÂú×ãf£¨a£©=0ÇÒ0£¼¦Á£¼¦ÐµÄ½Ç¦ÁµÄÖµ£®
·ÖÎö £¨¢ñ£©ÀûÓÃÊýÁ¿»ýµÄ×ø±ê±íʾÇóf£¨x£©µÄ½âÎöʽ£¬»¯¼òºó½áºÏ¸´ºÏº¯ÊýµÄµ¥µ÷ÐÔÇóµÃf£¨x£©µÄµ¥µ÷ÔöÇø¼ä£»
£¨¢ò£©ÓÉx¡Ê£¨-$\frac{¦Ð}{3}$£¬$\frac{¦Ð}{6}$£©£¬ÇóµÃ$2x-\frac{¦Ð}{6}$µÄ·¶Î§£¬½øÒ»²½Çóf£¨x£©µÄÖµÓò£»
£¨¢ó£©Çó³öÂú×ãf£¨¦Á£©=$sin£¨2¦Á-\frac{¦Ð}{6}£©$=0µÄ¦ÁµÄȡֵ¼¯ºÏ£¬½áºÏ¦ÁµÄ·¶Î§ÇóµÃ½Ç¦ÁµÄÖµ£®
½â´ð ½â£º£¨¢ñ£©ÓÉ$\overrightarrow{a}$=£¨$\sqrt{3}$sin£¨¦Ð+¦Øx£©£¬cos¦Øx£©£¬$\overrightarrow{b}$=£¨sin£¨$\frac{3}{2}$¦Ð-¦Øx£©£¬-cos¦Øx£©£¬µÃ
f£¨x£©=$\overrightarrow{a}$•$\overrightarrow{b}$=$\sqrt{3}$sin£¨¦Ð+¦Øx£©•sin£¨$\frac{3}{2}$¦Ð-¦Øx£©-cos2¦Øx
=$\sqrt{3}$sin¦Øx•cos¦Øx-cos2¦Øx=$\frac{\sqrt{3}}{2}sin2¦Øx-\frac{1}{2}cos2¦Øx$$-\frac{1}{2}$=$sin£¨2¦Øx-\frac{¦Ð}{6}£©$$-\frac{1}{2}$£®
¡ßf£¨x£©µÄ×îСÕýÖÜÆÚΪ¦Ð£¬¡à$\frac{2¦Ð}{2¦Ø}=¦Ð$£¬¼´¦Ø=1£®
¡à$f£¨x£©=sin£¨2x-\frac{¦Ð}{6}£©-\frac{1}{2}$£®
ÓÉ$-\frac{¦Ð}{2}+2k¦Ð¡Ü2x-\frac{¦Ð}{6}¡Ü\frac{¦Ð}{2}+2k¦Ð$£¬½âµÃ£º$-\frac{¦Ð}{6}+k¦Ð¡Üx¡Ü\frac{¦Ð}{3}+k¦Ð£¬k¡ÊZ$£®
¡àf£¨x£©µÄµ¥µ÷ÔöÇø¼äΪ[$-\frac{¦Ð}{6}+k¦Ð£¬\frac{¦Ð}{3}+k¦Ð$]£¬k¡ÊZ£»
£¨¢ò£©µ±x¡Ê£¨-$\frac{¦Ð}{3}$£¬$\frac{¦Ð}{6}$£©Ê±£¬$2x-\frac{¦Ð}{6}¡Ê£¨-\frac{5¦Ð}{6}£¬\frac{¦Ð}{6}£©$£¬Ôòº¯ÊýµÄÖµÓòΪ[$-\frac{3}{2}£¬0$£©£»
£¨¢ó£©ÓÉf£¨¦Á£©=$sin£¨2¦Á-\frac{¦Ð}{6}£©$=0£¬µÃ$2¦Á-\frac{¦Ð}{6}=k¦Ð$£¬
¡à$¦Á=\frac{¦Ð}{12}+\frac{k¦Ð}{2}£¬k¡ÊZ$£¬ÓÖ0£¼¦Á£¼¦Ð£¬
¡àÈ¡k=0¡¢1ʱ£¬ÇóµÃ$¦Á=\frac{¦Ð}{12}$¡¢$\frac{7¦Ð}{12}$£®
µãÆÀ ±¾Ì⿼²éÆ½ÃæÏòÁ¿µÄ×ø±êÔËË㣬¿¼²éÁËÈý½Çº¯ÊýÖеĺãµÈ±ä»»Ó¦Ó㬿¼²éÈý½Çº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬ÊÇÖеµÌ⣮
| A£® | $\frac{2}{5}$ | B£® | $\frac{1}{5}$ | C£® | $\frac{3}{10}$ | D£® | $\frac{1}{2}$ |
| A£® | £¨12£¬14£¬10£© | B£® | £¨10£¬12£¬14£© | C£® | £¨14£¬12£¬10£© | D£® | £¨4£¬3£¬2£© |
| A£® | £¨1£¬3£© | B£® | £¨3£¬-1£© | C£® | £¨1£¬-3£© | D£® | £¨-1£¬3£© |