ÌâÄ¿ÄÚÈÝ
20£®¢ÙÔÚ¡÷ABCÖУ¬ÈôsinA£¾sinB£¬ÔòA£¾B£»¢ÚÈôÂú×ãÌõ¼þC=60¡ã£¬AB=$\sqrt{3}$£¬BC=aµÄ¡÷ABCÓÐÁ½¸ö£¬Ôò$\sqrt{2}£¼a£¼\sqrt{3}$£»
¢ÛÔڵȱÈÊýÁÐ{an}ÖУ¬ÈôÆäǰnÏîºÍSn=3n+a£¬ÔòʵÊýa=-1£»
¢ÜÈôµÈ±ÈÊýÁÐ{an}ÖÐa2ºÍa10ÊÇ·½³Ìx2+15x+16=0µÄÁ½¸ù£¬Ôòa22+2a4a8+a102=225£¬ÇÒa6=¡À4£®
ÆäÖÐÕýÈ·µÄÃüÌâÐòºÅÓТ٢ۣ¨°ÑÄãÈÏΪÕýÈ·µÄÃüÌâÐòºÅÌîÔÚºáÏßÉÏ£©£®
·ÖÎö ¢ÙÔÚ¡÷ABCÖУ¬ÓÉsinA£¾sinB£¬ÀûÓÃÕýÏÒ¶¨Àí¿ÉµÃa£¾b£¬¿ÉµÃA£¾B£¬¼´¿ÉÅжϳöÕýÎó£»
¢ÚÓÉa£¾|AB|=$\sqrt{3}$£¬¼´¿ÉÅжϳöÕýÎó£»
¢ÛÓÉSn=3n+a£¬¿ÉµÃa1=3+a£¬µ±n¡Ý2ʱ£¬an=Sn-Sn-1£¬ÀûÓÃ${a}_{2}^{2}={a}_{1}{a}_{3}$£¬½âµÃa£¬¼´¿ÉÅжϳöÕýÎó£»
¢ÜÈôµÈ±ÈÊýÁÐ{an}ÖÐa2ºÍa10ÊÇ·½³Ìx2+15x+16=0µÄÁ½¸ù£¬a2+a10=-15£¬a2•a10=16£¬¿ÉµÃa22+2a4a8+a102=$£¨{a}_{2}+{a}_{10}£©^{2}$£¬${a}_{6}={a}_{2}{q}^{4}$£¬a2£¼0£¬Òò´Ëa6=-$\sqrt{{a}_{2}{a}_{10}}$£¬¼´¿ÉÅжϳöÕýÎó£®
½â´ð ½â£º¢ÙÔÚ¡÷ABCÖУ¬ÈôsinA£¾sinB£¬ÀûÓÃÕýÏÒ¶¨Àí¿ÉµÃa£¾b£¬Òò´ËA£¾B£¬ÕýÈ·£»
¢ÚÈôÂú×ãÌõ¼þC=60¡ã£¬AB=$\sqrt{3}$£¬BC=aµÄ¡÷ABCÓÐÁ½¸ö£¬Ôò$a£¾\sqrt{3}$£¬Òò´Ë²»ÕýÈ·£»
¢ÛÔڵȱÈÊýÁÐ{an}ÖУ¬ÈôÆäǰnÏîºÍSn=3n+a£¬¿ÉµÃa1=3+a£¬µ±n¡Ý2ʱ£¬an=Sn-Sn-1=2•3n-1£¬a2=6£¬a3=18£¬Ôò62=18£¨3+a£©£¬½âµÃa=-1£¬Òò´ËÕýÈ·£»
¢ÜÈôµÈ±ÈÊýÁÐ{an}ÖÐa2ºÍa10ÊÇ·½³Ìx2+15x+16=0µÄÁ½¸ù£¬¡àa2+a10=-15£¬a2•a10=16£¬Ôòa22+2a4a8+a102=$£¨{a}_{2}+{a}_{10}£©^{2}$=225£¬${a}_{6}={a}_{2}{q}^{4}$£¬a2£¼0£¬Òò´Ëa6=-$\sqrt{{a}_{2}{a}_{10}}$=-4£¬Òò´Ë²»ÕýÈ·£®
ÆäÖÐÕýÈ·µÄÃüÌâÐòºÅÓТ٢ۣ®
µãÆÀ ±¾Ì⿼²éÁËÕýÏÒ¶¨Àí¡¢µÝÍÆ¹ØÏµ¡¢µÈ±ÈÊýÁе͍ÒåͨÏʽ¼°ÆäÐÔÖÊ¡¢Ò»Ôª¶þ´ÎµÄ¸ùÓëϵÊýµÄ¹ØÏµ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | µÝÔöÇÒ×îСֵΪ-5 | B£® | µÝÔöÇÒ×î´óֵΪ-5 | ||
| C£® | µÝ¼õÇÒ×îСֵΪ-5 | D£® | µÝ¼õÇÒ×î´óֵΪ-5 |
| A£® | f£¨x£©=xÓëg£¨x£©=$\frac{{x}^{2}}{x}$ | B£® | f£¨x£©=|x|Óëg£¨x£©=$\sqrt{{x}^{2}}$ | ||
| C£® | f£¨x£©=x0Óëg£¨x£©=1 | D£® | f£¨x£©=$\sqrt{{x}^{2}-1}$Óëg£¨x£©=$\sqrt{x-1}$$\sqrt{x+1}$ |
| A£® | y=sinx | B£® | y=ex | C£® | y=lnx | D£® | y=cosx-$\frac{1}{2}$ |
| A£® | $\sqrt{7}$ | B£® | 2$\sqrt{3}$ | C£® | 3$\sqrt{7}$ | D£® | 7 |