题目内容
| lim |
| n→∞ |
| A、2πr2 | ||
B、
| ||
| C、4πr2 | ||
| D、6πr2 |
分析:依题意可知,图形中内切圆面积依次为:πr2,
πr2,
πr2,
πr2,由此可以求出则
Sn的值.
| 3 |
| 4 |
| 9 |
| 16 |
| 27 |
| 64 |
| lim |
| n→∞ |
解答:解:依题意分析可知,
图形中内切圆半径分别为:r,r•cos30°,(r•cos30°)cos30°,(r•cos30°,cos30°)cos30°,
即r,
r,
r,
r,
则面积依次为:πr2,
πr2,
πr2,
πr2,
所以
Sn=
(πr2+
πr2+)=πr2×
(1+
+
+
+)=πr2×
=4πr2.
故选C.
图形中内切圆半径分别为:r,r•cos30°,(r•cos30°)cos30°,(r•cos30°,cos30°)cos30°,
即r,
| ||
| 2 |
| 3 |
| 4 |
3
| ||
| 8 |
则面积依次为:πr2,
| 3 |
| 4 |
| 9 |
| 16 |
| 27 |
| 64 |
所以
| lim |
| n→∞ |
| lim |
| n→∞ |
| 3 |
| 4 |
| lim |
| n→∞ |
| 3 |
| 4 |
| 9 |
| 16 |
| 27 |
| 64 |
| 1 | ||
1-
|
故选C.
点评:本题考查函数的极限,解题时要认真审题,仔细计算,避免出错.
练习册系列答案
相关题目
A、
| ||||
B、
| ||||
C、
| ||||
D、
|