题目内容

已知x2=2y+5,y2=2x+5(x≠y),则x3-2x2y2+y3的值为
 
考点:有理数指数幂的运算性质
专题:函数的性质及应用
分析:由已知得x2-y2=2(y-x),所以x=y或x+y=-2.由此分类讨论,能求出结果.
解答: 解:∵x2=2y+5,y2=2x+5(x≠y),
∴x2-y2=2(y-x),即(x-y)(x+y)=2(y-x)
∴x=y或x+y=-2.
当x=y时,x2=2x+5,解得x=1±
6
,①
x3-2x2y2+y3=2x2(x-x2)=2(2x+5)(x-2x-5)
=-2(2x2+15x+25)
=-38x-70
=-108±38
6

当x+y=-2时,x,y是方程x2+2x-1=0两根,
则x+y=-2,且xy=-1,
x3-2x2y2+y3=(x+y)[(x+y)2-3xy]-2(xy)2=-16,
综上,x3-2x2y2+y3的值为-108±38
6
或-16.
故答案为:-108±38
6
或-16.
点评:本题考查有理数指数幂的化简求值,是中档题,解题时要注意分类讨论思想的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网